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Cohesive energy, stability, and structural transitions in polyelectrolyte bundles
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A lattice of uniformly charged, infinitesimally thin rods decorated with an ordered array of counterions
exhibits anomalous behavior as the spacing between the rods is varied. In particular, the counterion lattice
undergoes a sequence of structural shearing or ‘‘tilting,’’ phase transformations as the spacing between the rods
decreases. The potential implications of this behavior with respect to the packaging of biologically relevant
polyelectrolytic molecules are commented upon.
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I. INTRODUCTION

Polyelectrolyte chains naturally repel each other sin
they carry an overall electric charge. That these chains
nevertheless form condensed phases in the presence o
positely charged counterions has been known for some t
It has also become clear that this condensation results f
some form of organization of the counterions, either dyna
cal @1,2# or essentially static, in the form of a counterio
lattice @3#. In both cases, the attraction between opposit
charged regions overcomes Coulomb repulsion between
bare chains and leads to a net attraction. Correlations in
counterion system are crucial, since it is well known th
mean field theory, represented by solution of the Poiss
Boltzmann system of equations, cannot yield an attrac
between like-charged rods@1,4–6#.

The physics of polyelectrolytes is relevant to biologic
systems. For example, double-helix DNA will, under certa
conditions, organize into a condensed state in which it s
assembles into bundles of densely packed parallel rods@4,7#.
An important venue for this condensation is within the hea
~or capsids! of various viruses@8#. This organization occurs
in spite of the fact that ‘‘naked’’ DNA carries a strong neg
tive charge—one excess electron per phosphate group o
backbone@9#. DNA has also been observed to form co
densed liquid-crystal-like phases in the presence of poly
lent counterions@10,11#. In addition, counterion-mediate
formation of actin bundles has also been observed@12#. In-
terestingly, in this last case, there is evidence of a kind
counterion lattice, in the form of a charge-density-wave–l
modulation along the axis of the condensed actin filame
In such a lattice, the ‘‘counterions’’ in the lattice actual
consist of clusters of individual counterions, and can the
fore not be represented as point particles. The question o
ionic lattice specifically in the case of condensed DNA
mains an open one, since there is, as yet, no experime
indication of such an organization of counterions. Furth
more, theoretical estimates indicate that a three-dimensi
~3D! structure requires counterion valencesZ greater than
about 6@3#. A lattice of pointlike counterions in condense
biological rodlike molecules thus remains a conjectu
rather than an established fact. Nevertheless, it represe
1063-651X/2003/68~5!/051902~10!/$20.00 68 0519
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sufficiently interesting and potentially important constru
within biological and polyelectrolyte physics that its prope
ties merit investigation.

In this paper we analyze more carefully the cohesive
ergy of the background of negatively charged rods alo
with a neutralizing, crystalline counterion system. We a
sume the counterions form amodified face-centered cubic
~fcc! crystal. Our principal result is that, as the rod dens
increases, the counterion system maintains stability by
dergoing structural transitions to ‘‘tilted’’ lattices. More pre
cisely, we have located two symmetry-breaking structu
transitions: the first is of the three-state Potts type and
therefore weakly first order@13#. The second is a continuou
transition in the Ising universality class. A fluctuation ana
sis indicates that the transitions are mean field in nature. T
reflects the dominating influence of long-range Coulomb
teractions between the unscreened charges that are bou
the rods. At the end we speculate on how the singulari
associated with such transitions could be relevant to
physics of packaging and other bundling phenomena in b
ogy. It is worth noting that structural transitions have be
recently observed in DNA-dendrimer complexes@14#. These
transitions do not appear to correspond to the specific o
we discuss. However, the notion of structural transitions
complexes of rods and localized charges clearly has an
perimental as well as a theoretical basis.

We also touch on, but do not discuss in detail, the co
terion ‘‘melting’’ transition expected when the rods are f
apart. This leads to a ‘‘counterion liquid.’’ The attraction b
tween rods in such a state has been extensively explore
Ha and Liu @2,15,16#. The melting transition is continuou
and can be shown to be in the universality class of the th
dimensionalXY model; see, e.g., Refs.@17–20#. A brief re-
view of the arguments leading to this conclusion appear
the appendixes.

An outline of this paper is as follows. The following se
tion contains the characterization of the lattice and the C
lomb energy calculations. Section III addresses melting
the counterion lattice, while Sec. IV contains concluding
marks. A series of appendixes address some technical is
Appendix A contains a calculation of the Coulomb energy
a lattice of infinite, uniformly charged rods. Appendix B pr
©2003 The American Physical Society02-1
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vides the derivation of the term in the energy quadratic
displacements of counterions from their lattice sites~i.e., har-
monic ‘‘phonon’’ dispersion relation!. Appendix C provides
some heuristics on the melting of the counterion lattice.

II. LATTICE OF RODS AND COUNTERION ENERGY

The ‘‘lattice’’ consisting of a set of negatively charge
rods and attached polyvalent counterions of charge1Ze will
be treated as a simple ionic lattice. At the first stage of
proximation, the fixed charge of the rods will be replaced
a uniform negatively charged background~as in the jellium
model of interacting electrons@21#!. The counterions will be
assumed to form a three-dimensional lattice that genera
the close-packing arrangement in a fcc crystal. Given that
rods are infinitesimally thin, there is no prospect of a tw
dimensional arrangement of charges on the surface of an
them@3#. As has been noted in the literature@22#, the lattice
we will consider can be constructed starting from a tw
dimensional hexagonal close-packed structure, via the in
duction of three sublattices. Our generalization makes us
this construction. No significant error is introduced by o
neglect of the explicit contribution of the rods themselves
electrostatic interactions. Dimensional considerations
detailed calculations~see Appendix A! lead to the conclusion
that the Coulomb energy due to interactions between cha
rods consists of two contributions, the first independent
the separation between rods and the second going as
logarithm of the separation between rods, assuming ove
charge neutrality. The rod-counterion interaction is the sa
as the rod-rod interaction because of translational invaria
along the rod’s axis. Given that the counterions are force
sit on the rods, the principal outcome of the rod-counter
interaction arises from the overall charge neutrality enfor
by the charge on the rods.

A. Structure of the rod-counterion lattice

Imagine a large bundle of hexagonally close-packed p
cils or rods. Viewed end-on, the rods lie on three triangu
sublattices, as depicted in Fig. 1. Now pass planes at reg
spacingl v perpendicular~initially ! to the rods. Where the
first plane intersects the rods on the first sublattice, pl
counterion charges. Likewise, treat the second and t

FIG. 1. ~Color online! Schematic of the counterion lattice, see
end-on with respect to the rods that support it. The rods are h
agonally close packed, and the three sublattices occupied by
counterions are indicated.
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planes at their intersections with rods on the second and t
sublattices, respectively. Repeat this pattern with subseq
planes, thereby building an infinite three-dimensional mo
fied fcc lattice. Figure 2 displays the lattice from a viewpo
perpendicular to the axis of the rods. The three counter
sublattices are evident if one scans the figure from left
right. If l v is adjusted appropriately relative to the lattic
constant of one triangular sublattice,l h , the counterion
charges themselves sit on a true fcc lattice.

The three primitive vectors of the Bravais lattice of cou
terions so constructed are

aW 15
1

2
l hx̂1

A3

2
l hŷ1 l v~gx1gyA3!ẑ, ~2.1!

aW 252
1

2
l hx̂1

A3

2
l hŷ1 l v~2gx1gyA3!ẑ, ~2.2!

aW 35
1

A3
l hŷ1 l vS 11

2

A3
gyD ẑ. ~2.3!

The dimensionless vectorgW 5 x̂gx1 ŷgy encodes the pos
sibility of tilting the planes of counterions. The correspon
ing primitive vectors of the reciprocal lattice,bW i , are con-
structed in the standard way@22#, so that the relationship
between the two sets of primitive vectors isaW i•bW j52pd i , j .
To recover the true fcc lattice, the aspect ratio,r[ l h / l v is
taken to beA3/2 andgW is set equal to zero. The aspect rat
will play the role of a control parameter in what follows.

Assume overall charge neutrality of the rod-counteri
system, so that there is exact cancellation between the m
charge per unit volume of the counterion lattice and the u
formly charged negative background provided by the ro
We make use of the Ewald method for the evaluation of

x-
he

FIG. 2. A view of the lattice perpendicular to the axis of th
rods. The spheres represent the counterions. Scanning from le
right, one observes the three sublattices.
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Coulomb sum@21–23#. The ‘‘reduced’’ Coulomb energy is
defined as

ECoul/~Z2e2/2l v![ẼCoul5 (
nW Þ0

l v

un1aW 11n2aW 21n3aW 3u
2S,

~2.4!

wherenW is a triplet of integers (n1 ,n2 ,n3), and the subtrac-
tion S represents the compensating interaction with
smeared out negatively charged background.

In our calculation, we assume that the distance betw
‘‘planes’’ of ions is fixed atl v . The effect of a compressio
of the lattice of polyelectrolytic rods is to decrease the sp
ing l h .

B. The Coulomb sum

Using Ewald summation techniques@21–23#, one gener-
ates an expression for the Coulomb energy that can be
pressed in terms of the sum of four terms. Those terms

2
2

Ap
a1/2~ l h

2l v!21/3, ~2.5!

(
nW Þ0

1

un1aW 11n2aW 21n3aW 3u

3$12erf@ un1aW 11n2aW 21n3aW 3ua1/2~ l h
2l v!21/3#%, ~2.6!

2
p

v
a21~ l h

2l v!2/3, ~2.7!

4p

v (
mW Þ0

e2um1bW 11m2bW 21m3bW 3u2a21( l h
2l v)2/3/4

um1bW 11m2bW 21m3bW 3u2
. ~2.8!

The quantitya in the expressions above is an adjusta
parameter, which is ideally set equal to a value that ma
mizes convergence of the Ewald sums in Eqs.~2.6! and~2.8!.
A close-to-optimal choice isa54p. The quantityv in Eqs.
~2.7! and~2.8! is the Wigner-Seitz volume of the counterio
lattice.

The mean-field phase diagram of the lattice can be de
mined by examining the dependence of the Coulomb ene
on the aspect ratior and the tilt vectorgW . What one finds is
that for r greater than a threshold valuer a'1.1 the Coulomb
energy is minimized whengW 50. At this threshold value
three minima lying symmetrically in thegW plane represen
equally low energies. This situation is illustrated in Fig.
When r ,r a , gW 50 no longer represents a global minimu
of the energy. Atr 5r s'1.097, the local minimum atgW 50
disappears. In this sense, one can think ofr s as a ‘‘spinodal’’
point. Note the small difference betweenr s and r a . The
transition atr a is weaklyfirst order.

As r is further reduced, corresponding to even clo
packing of the rods, a new structural transition is enco
tered, at which the three minima each split into two n
ones. The aspect ratior b at which this transition takes plac
is approximately equal to 0.801. Contour plots illustrati
the onset of this transition and the evolution of the new m
mum energy configurations are shown in Fig. 4. That t
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transition is also a symmetry-breaking one is evident fr
Fig. 4. Here, the transition is continuous, in that the appe
ance of the six minima at lower aspect ratio is simultane
with the disappearance of the three minima associated
values ofr greater thanr b . At mean-field level this transition
is of the standard second-order type. Given the nature of
symmetry breaking, it is altogether reasonable to classif
as an Ising-like, orO(1), phase transition. In the case
hand, the aspect ratio plays the role of temperature. T
means that singularities that one expects to find in the
tropy and specific heat of a thermal system will show up h
in the form of nonanalyticities in the dependence of the
ergy as a function of spacing between rods, with direct c
sequences on packing forces.

In light of the continuous nature of the phase transition
r 5r b and the weakness of the first-order phase transitio
r 5r a , the question of the effects of fluctuations is clea
relevant. We address this question with the use of coa
grained effective Hamilitonians. Assume that the counterio
are only allowed to move along the rods. Then, at the on
of the first-order transition, we can express the fluctuation
the locations of the counterions in terms of a scalar displa
ment fieldu(rW) representing counterion displacements par
lel to the rods. The Coulomb energy can then be written as
expansion in terms ofu. This energy is most usefully ex
pressed in terms of the Fourier transform of the displacem
field. The most relevant terms in the expansion yield
expression

H5(
kW ,Q

F ukW u2~r 2r s!1Ck41AQ21B
Q2

k21Q2G
3u~kW ,Q!u~2kW ,2Q!

1 (
qW 1 , . . . ,qW 3

w3~qW 1 ,qW 2 ,qW 3!u~qW 1!u~qW 2!u~qW 3!dqW 11qW 21qW 3

1 (
qW 1 , . . . ,qW 4

w4~qW 1 ,qW 2 ,qW 3 ,qW 4!u~qW 1!u~qW 2!u~qW 3!u~qW 3!

3dqW 11qW 21qW 31qW 4
. ~2.9!

-0.04 -0.02 0 0.02 0.04

-0.04

-0.02

0

0.02

0.04

gx

gy

FIG. 3. Contour plot of the Coulomb energy of the generaliz
fcc counterion lattice in thegx2gy plane atr 5r a'1.1. The four

minima, including the one atgW 50, are all of equal depth.
2-3
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FIG. 4. The emergence of six minima in th
Coulomb energy, and the migration of thos
minima as the aspect ratio is decreased below
threshold valuer b50.801. Reading from left to
right and top to bottom, the values ofr are equal
to 0.801, 0.693, 0.577, and 0.433, respective
The arrow in the bottom-right-hand figure poin
to one of the six true minima of the energy.
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Here, we have split the three-dimensional wave vectorqW into
a two-dimensional vectorkW in thex-y plane and a componen
Q in the z direction. The term with coefficientB is the con-
tribution to the quadratic energy reflecting the long-ran
nature of the unscreened Coulomb interactions betw
counterions. We have inserted the ‘‘stabilizing’’ quartic ter
going ask4, but have ignored the inessential term prop
tional to Q4, or the cross term, proportional tok2Q2. It is
important to keep in mind that the actual stabilization of t
system results from the shearing transition.

The higher order terms in the effective Hamiltonian~2.9!
have the following forms:

w3~qW 1 ,qW 2 ,qW 3!52C1~ky
323kykx

2! ~2.10!

and

w4~qW 1 , . . . ,qW 4!5W~qW 1 , . . . ,qW 4!

1B1@~kW1•kW2!~kW3•kW4!1permutations#

1B2Q1Q2Q3Q4

1B3@~kW1•kW2!Q3Q41permutations#.

~2.11!

Here,
05190
e
n

-

W~qW 1 , . . . ,qW 4!5v~qW 11qW 2!1v~qW 11qW 3!1v~qW 21qW 3!

2v~qW 1!2v~qW 2!2v~qW 3!

2v~2qW 12qW 22qW 3!, ~2.12!

where

v~qW !5
Q4

uqW u2
. ~2.13!

There are three distinct permutations of the indices in
first line of the right-hand side of Eq.~2.11! and six distinct
permutations in the last line of the right hand side of th
equation. The termW(qW 1 , . . . ,qW 4) appears to be the mos
relevant contribution to the fourth-order coupling in th
Ginzburg-Landau-Wilson model appropriate to this syste
However, as it turns out, the most important term in E
~2.11! is the first one in the square brackets, going ask4.

That the contributions to the energy associated with fl
tuations about the lattice have the forms shown above ca
established through explicit evaluation of Coulomb-type l
tice sums. Appendix B outlines the calculation in the case
the quadratic terms and presents results for those and
fourth-order terms that are obtained through explicit eval
tion of those sums.

To perform an analysis of the effects of fluctuations
this weak first-order transition, one can consider a ‘‘Ginzbu
criterion’’ @24# applied to the one-loop contribution to th
‘‘entropy’’ of the system@25#. Recall that the leading contri
bution to the mean-field entropy goes asr 2r s for r→r s1.
Given the form of the quadratic term in Eq.~2.9!, and recall-
2-4
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ing thats;]F/]r , with F the free energy, we have the fo
lowing expression for the one-loop entropy:

s;E k2d3q

~r 2r s!k
21Ck41AQ21B

Q2

k21Q2

→E k2d2kdQ

~r 2r s!k
21Ck41B

Q2

k2

. ~2.14!

The expression on the right-hand side of Eq.~2.14! contains
the important terms in the denominator. A variety of metho
exist for the evaluation of the integrals in this expressi
The essence of the results follows from a rescaling,Q
5k2x. Then, the integral to perform is

E k2d2kdx

~r 2r s!1Ck21Bx2
. ~2.15!

We now note that this has the same qualitative depende
on the ‘‘reduced temperature,’’r 2r s , as the corresponding
one-loop integral of a five-dimensionalO(n) model with
short-range interactions. A further rescaling of the integrat
variables produces a leading singularity proportional tor
2r s)

3/2 compared to the mean-field result is proportional
r 2r s . This application of the Ginzburg criterion shows th
the transition isun-renormalized. A calculation of the renor-
malization of the fourth-order interaction leads to the sa
conclusion, namely, that fluctuations lead to a well-beha
change in the amplitude. This leads to the conclusion t
because of the long-range dipole-dipole interactions betw
the charges embedded on the rods, the first-order shea
phase transition of the charge lattice atr 5r a is essentially
mean field in nature. Similar arguments, allowing for mo
fications in the form of Eq.~2.9! by, for example, breaking
rotational symmetry in thex-y plane, reveal that fluctuation
do not modify the mean-fieldcontinuousshearing transition.
Technically, the transition atr 5r b is Ising-like with effective
dimensionalityd.4.

The full results of the Coulomb energy calculations a
shown in Fig. 5. The analysis above reveals that fluctuati
do not qualitatively change the picture.

Figure 6 displays the~very small! discontinuity in the
derivative]ẼCoul/]r at the first-order transition atr 5r a .

III. MELTING OF THE COUNTERION LATTICE

The three-dimensional lattice of statically correlat
counterions being discussed can be reasonably expect
exist at low enough temperatures and for sufficiently clo
packing of the lattice of rods. At high temperatures and wh
the spacing between rods is relatively large, the counte
lattice will not be stable against thermal fluctuations. A va
ety of arguments lead to the criteria for the existence of
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lattice. The simplest compares the~negative! interaction en-
ergy of the lattice tokBT. It is reasonable to expect that th
lattice will resist the disordering effects of thermal fluctu
tions when

UZ2e2

2l v
ẼCoulU>kBT. ~3.1!

Assuming that the general conditionZ2e2/(kBTlv)@1 for
the existence of a ‘‘Wigner crystal’’ in the counterion
polyelectrolyte system are met@3#, we expect the crystal dis
cussed here to be stable as long asuẼCoulu is of order unity or
greater. According to Fig. 5, this should be the case as fo
range of aspect ratios that encompass the two structural
sitions on which this paper has focused.

An alternative estimation of the threshold at which me
ing of the counterion lattice takes place is based on the L
demann criterion@21#, according to which a lattice melt
when thermally induced displacements are some fraction
the lattice spacing. This leads to approximate predictions
the melting transition that we expect to be consistent with
energy-vs-entropy arguments, leading to the criterion~3.1!
for the stability of the counterion lattice against melting.

When melting takes place, it does so in the same way
charge-density waves disappear, that is to say, continuou
with thermodynamic signatures that identify its universal
class as that of the 3DXY model. Theoretical arguments an

0.5 1 1.5 2

-6

-4

-2

0

ECoul
~

r

rr ab

FIG. 5. Solid line: the reduced Coulomb energy as a function
aspect ratio in the vicinity of the first-order and continuous tran
tions. Dashed line: the energy if the counterion lattice is constrai
not to tilt. The locations of the transitions are indicated in the figu

∂E
  
 /

∂r
C

o
u

l

~ r
r a

FIG. 6. A plot of ]ẼCoul /]r in the immediate vicinity ofr
5r a , illustrating the discontinuity there, associated with the fir
order phase transition to the sheared lattice.
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experimental observations that justify this conclusion in
case of charge-density-wave systems can be found in
literature@17–20#. Appendix C contains a brief, heuristic a
gument for the nature of the melting transition in the cou
terion system.

IV. CONCLUSIONS

As noted above, the singularities in the dependence of
Coulomb energy on aspect ratio have implications with
spect to the energetics of bundling or packaging polyelec
lytic molecules. These implications follow from the effectiv
force exerted by the decorated rods on each other, as d
mined by the ‘‘pressure’’p[2]ECoul/]r . The pressure
~analogous to the entropy in a thermal system as discus!
has a discontinuity atr 5r a , and a discontinuous derivativ
at r 5r b . The singularities are not striking~recall Fig. 6!.
The kinetics of bundling or packaging such molecules w
crystallized counterions are presumably affected by the C
lomb energy, and should, in principle, reflect these singul
ties. What is more important, however, is the possibility th
a sequence of structural transitions in the counterion lat
assists compression to high densities. In Fig. 5 we h
shown the Coulomb energy computed directly from t
Ewald sums in the vicinity of the first-order transition atr
5r a and the continuous transition atr 5r b . The dashed
curve shows the energy if the lattice were constrained no
tilt. It is interesting to contemplate whether in some instan
Nature relieves the strong Coulomb repulsion via structu
transitions.

It is important to note that one cannot argue for structu
transitions as thesine qua nonof polyelectrolyte packaging
Specifically, in the packaging of DNA in tail-type bacte
riophages, ATP is known to provide the fuel for a packag
motor @8,26#. Order of magnitude estimates suggest t
;50–60 pN forces generated by this motor@26# suffice to
overcome Coulomb forces and compress a rodlike system
observed densities without benefit of structural transitio
Of course, in experimental situations other repulsive ener
besides Coulomb are also involved@27,28#.

The present analysis does not suggest dramatic co
quences in actin bundling, or in the kinetics of packag
and/or infection in a bacteriophage life cycle. However
continuous shearing transition, if realized, should be acc
panied by strong counterion charge fluctuations, which co
be susceptible to dynamic scattering experiments. The tilt
estimated to be a few percent at the first-order transit
could potentially be detected by standard diffraction te
niques.

While, strictly speaking, we have shown that a shear
transition ought to occur in a sufficiently closely packe
constrained polyelectrolytic system, we have not ruled
the possibility that some other transition intercedes, preem
ing this particular rearrangement as the system of rod
compressed. One would have to consider possibilities
ever larger unit cells in the rod lattice. More importantly, w
can only suggest the possibility that tilting or other structu
transition~s! occur as biologically relevant polyelectrolyti
molecules condense. We hope this work will stimulate f
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ther experiments on, for example, the kinetics of DNA pac
aging, since such a transition could occur ‘‘on the fly’’ as t
‘‘spooling’’ progresses@28,29#. In other potential experi-
ments, DNA or other bundles of varying density could
prepared and probed statically.
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APPENDIX A: THE COULOMB SUM FOR UNIFORMLY
CHARGED RODS

As discussed in the text, the charges on the rods h
been assumed to be smeared out into a three-dimens
smooth background, analogous to the jellium model used
discussions of electron-electron interactions in a metal@21#.
In this Appendix, we evaluate the corrections to this appro
mation by now assuming that the backbone charges are
form along the rods. The method utilized to evaluate th
alteration in the Coulomb energy that is induced by this
finement in the model is a version of the Ewald summat
technique@21–23#. The quantity we will calculate is the po
tential energy of a charged test rod in the presence of
array of uniformly charged rods, which are assumed to be
a hexagonal close-packed arrangement. At the end, the
rod will be moved onto a rod of the lattice. Before doing th
we eliminate~‘‘subtract’’! the interaction between the te
rod charge and the rod on which it eventually sits.

Because the rods are uniformly charged in thez direction,
the potential at the two-dimensional locationrW due to a rod at
the origin is given by

f~rW !}
1

pE eiqW •rW

q2
d2q5

1

pE0

`

dtH E eiqW •rW2q2td2qJ .

~A1!

We split thet integration into one from 0 toT and another
from T to `, whereT is, initially, arbitrary. We suppose tha
the distance between nearest-neighbor rods in the cl
packed lattice isl h . Given this, we will takeT} l h

2 . The
primitive vectors for this lattice can be taken to be

aW 15 l hx̂, ~A2!

aW 25
l h

2
x̂1

A3l h

2
ŷ, ~A3!

and the volume of the primitive cell for this lattice is

vWS5
A3

2
l h
2 . ~A4!
2-6
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The corresponding reciprocal lattice vectors are

b15
2p

l h
S x̂2

1

A3
ŷD , ~A5!

b25
4p

A3l h

ŷ, ~A6!

while the volume of the primitive cell of the reciprocal la
tice is given by

vBZ5
8p2

A3l h
2

. ~A7!

For the integration fromt5T to t5`, we make use of the
two-dimensional version of the Poisson sum formula:

(
rW5RW i

f ~rW !5
1

vWS
(
QW k

E eiQW k•rW f ~rW !d2r , ~A8!

where$RW i% correspond to a hexagonal lattice and where
QW k range over the reciprocal lattice. We then have for
contribution of this region oft integration to the potentia
energy of a point charge at the locationrW

1

pvWS
(
QW k

E d2r E d2qei (qW 1QW k)•r
e2Tq2

q2

5
4p

vWS
(
QW k

e2TQk
2
eiQW k•rW

Qk
2

. ~A9!

The only tricky part here is the term for whichQW k50, cor-
responding to the smeared-out portion of the distributi
This can be handled by a careful subtraction. Because o
fact thatT} l h

2 and the fact that theQW k’s go asl h
22 , terms in

Eq. ~A9! are independent of the spacing between rods,l h .
The next portion of the integration is from 0 toT. Here,

we sum directly in real space. We find

1

p (
RW l

E
h

T

dtE d2qeiqW •(rW2RW l )e2tq2

5(
RW l

E
1

`

e2urW2RW l u
2t/4T

1

t
dt. ~A10!

A careful subtraction eliminates the divergent contribution
term in the sum in whichRW l5rW. The divergence arises whe
the limit rW→0 is taken, corresponding to placing the test r
on one of the rods in the lattice. One subtracts the stand
energy associated with the Coulomb interaction between
test rod charge and the rod at the origin. This subtrac
05190
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leads to the only term with anyl h dependence, going as lnlh .
All other dependences disappear because of cancellation
tween thel h dependence of theQW k’s, theRW l ’s, andT.

The subtraction in Eq.~A9! associated with theQW k50
term is easily carried out, as is the subtraction in the cas
the term associated with a test rod positionrW directly on a
rod, in Eq.~A10!. Choosing specifically

T5
a l h

2

4p
, ~A11!

with a an arbitrary constant, one can perform the sums
dicated above, with the appropriate subtractions. One fi
the following result for the Coulomb sum:

22.786 0812ln l h . ~A12!

Note that the above result must be independent of the a
trary constanta. We are now in a position to include mor
precisely the effect of the concentration of negative cha
on the polyelectrolyte rods. One must multiply the res
~A12! by

s25S Ze

l v
D 2

, ~A13!

where s is the linear charge density on the rods,Z is the
valence of the condensed counterions, andl v is the spacing
between counterions on the rod. The above multiplicat
will yield an energy of the rod lattice per unit rod length.

We are thus led to an expression for the contribution
the rod-rod interaction to the Coulomb energy; it has a n
trivial, but smooth dependence on the separation betw
rods. This energy adds as a ‘‘background’’ term to the en
gies calculated in the body of this paper. A very similar c
culation is used to compute the interaction energy betw
the counterion lattice and the uniformly charged rod latti
Both contributions have no effect on the structural transitio
discussed in the body of the paper.

APPENDIX B: EWALD SUM FOR THE SECOND
AND HIGHER ORDER TERMS IN COUNTERION

DISPLACEMENTS

The result for the energy cost of a distortion of the cou
terion lattice follows straightforwardly from the expressio
for the energy of a collection of interacting charges. We s
by writing the two-particle interaction energy in terms of i
spatial Fourier transform,

V~rW !5E d3qv~qW !eiqW •rW. ~B1!

Then the positions of the counterions,rW j , are expanded in
terms of displacements from the lattice sites,uW (RW j ). Assum-
2-7
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ing that those displacements are entirely in thez direction, in
line with our model in which the counterions are bound
the charged polyelectrolyte rods, the displacement of thej th
counterion from its equilibrium position on the counterio
lattice will be equal toẑu(RW j )5uj ẑ. Expanding to second
order in theu’s, we obtain for the energy associated wi
those distortions,

(
qW

F(
QW

@~qz1Qz!v~qW 1QW !2Qzv~QW !#Gu~qW !u~2qW !,

~B2!

where u(qW ) is the spatial Fourier transform of the lattic
displacementuj :

u~qW !5(
j

uje
2 iqW •RW j . ~B3!

Given that the interactions are Coulomb, the sum of in
est is of the form

(
QW

~qz1Qz!
2

uQW 1qW u2
2(

QW

~Qz!
2

uQW u2
, ~B4!

where theQW ’s are displacement vectors on the recipro
lattice. The primitive displacement vectors on this lattice
bW 1 , bW 2, andbW 3. The primitive displacement vectors on th
original lattice areaW 1 , aW 2, andaW 3. The relationship between
the bW ’s and theaW ’s is

bW 152p
aW 23aW 3

aW 1•~aW 23aW 3!
, ~B5!

and similarly for bW 2 and bW 3. The primitive volume in the
reciprocal lattice is the volume of the first Brillouin zon
given by

vBZ5ubW 1•~bW 23bW 3!u. ~B6!

The primitive volume in the real lattice is the volume of th
Wigner-Seitz cell, given by

vWS5uaW 1•~aW 23aW 3!u. ~B7!

Given the relationship between theaW ’s and thebW ’s, the fol-
lowing holds:

vBZvWS5~2p!3. ~B8!

The Poisson sum formula in three dimensions takes the
lowing form:
05190
r-

l
e

l-

(
QW

f ~QW !5
1

vBZ
E d3Q(

RW
eiRW •QW f ~QW !. ~B9!

The sum on the right hand side is over all lattice points
the real space lattice. One final relationship between theaW ’s
and thebW ’s is

aW i•bW j52pd i , j . ~B10!

In Eq. ~B9! eachQW is of the formm1bW 11m2bW 21m3bW 3,
where themi ’s take integral values from2` to `. Similarly,
the RW ’s are of the formn1aW 11n2aW 21n3aW 3, where theni ’s
range over all integers as well.

Now, one can clearly write the expression in Eq.~B4! in
the form f (qW )2 f (0). Focus onf (qW ) and write

~qz1Qz!
2

uqW 1QW u2
5E

0

`

~qz1Qz!
2e2uqW 1QW u2tdt. ~B11!

As in Appendix A, the integral overt splits into an integral
from 0 toT and fromT to `, where, in this case, we choos

T5b
p

~vBZ!2/3
5b

~vWS!
2/3

4p
, ~B12!

whereb is arbitrary. For the integral fromT to `, one finds

(
QW

~qz1Qz!
2

uqW 1QW u2
e2pbuqW 1QW u2/vBZ

2/3

5
qz

2

uqW u2
e2bpuqW u2/vBZ

2/3
1 (

QW Þ0

~qz1Qz!
2

uqW 1QW u2
e2pbuqW 1QW u2/vBZ

2/3
.

~B13!

The Poisson sum formula is applied to the integrat
over t from 0 to T. This leads to the following expression:

E d3QH 1

vBZ
(
RW

E
0

bp/vBZ
2/3

5bvWS
2/3/4p

3eiQW •RW 2uqW 1QW u2t~qz1Qz!
2dtJ . ~B14!

The integral in brackets is evaluated by introducing the g
erating function

1

vBZ
(
RW

E
0

bvWS
2/3/4p

eiQW •RW 2uqW 1QW u2t1k ẑ•(qW 1QW )dt. ~B15!
2-8
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One obtains Eq.~B14! from Eq. ~B15! by taking the second
derivative with respect tok, and then settingk50. For non-
zeroRW , the integral overQW is taken easily enough. Comple
ing squares, one is left with

1

vBZ
E

0

bvWS
2/3/4pS p

t D 3/2

e2 iRW •qWe(1/4t)[ iRW 1k ẑ] 2
dt. ~B16!

Rescaling the integration variable and taking the requi
second derivative with respect tok yields

b23/2E
1

`

t21/2e2 iRW •qWe2pR2t/bvWS
2/3F2

pRz
2t2

bvWS
2/3

1
t

2Gdt.

~B17!

There is a singular contribution to the total sum from t
term in whichRW 50. However, that term is independent ofqW ,
and is, therefore, canceled when the total expression wiqW
50 is subtracted. The nonvanishing contribution is the s
over nonzeroRW ’s of the expression in Eq.~B17!. To this is
added Eq.~B13!, and the result isf (qW ) defined through Eq.
~B4!.

Note that in all the above, the parameterb has not been
fixed. It is, in fact, left undetermined, and may be set
speed convergence of the sums. Alternatively, it may be
as an internal check on the procedure, since the final re
must be independent ofb.

To see what the sum developed above yields, we split
wave vectorqW as follows:qW 5 ẑQ1kW , where the projectionkW
lies in thex-y plane. Numerical results are consistent with
energy quadratic in displacements that is proportional tok2

whenQ50 andkW is small. Figure 7 shows the coefficient o
k2 in the quadratic energy@see Eq.~B2# as a function of the
aspect ratior 5 l h / l v . Note that the coefficient goes throug
zero at a value ofr that is close to 1. This corresponds to t
‘‘spinodal instability’’ lying below the first-order transition a
r'1.1. Near the spinodal the harmonic spectrum takes
form shown in Eq.~2.9!. The coefficientA(r ) goes through a
maximum asr increases above this value, and then d

r

A(r)~

FIG. 7. The quantityÃ(r )52A(r )/(Z2e2/kBTlv), whereA(r )
is the coefficient ofk2 in the energy of distortion of the modified fc
lattice, quadratic in the displacement field, as a function of
aspect ratior 5 l h / l v . In this plot, thez component of the wave

vectorqW of the distortion has been set equal to zero.
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creases, tending to zero asymptotically as the aspect
becomes large. This latter tendency reflects the weakenin
the interaction that stabilizes the counterion lattice as
distance between the rods grows in comparison to the
tance between neighboring charges on a rod. In fact, it is
hard to demonstrate thatA(r ) will decay exponentially asr,
the aspect ratio, gets large.

To deal with terms that are third and fourth order in t
displacement field, the procedure is the same as the one
cussed above. One is left with lattice sums to perform, a
the Ewald method leads to rapidly converging numerical
gorithms. The results~2.10!–~2.13! are obtained. We
find for the coefficients B1–B3 in Eq. ~2.11!, Bk

5(Z2e2/2kBTlv)B̃k , where

B̃150.143, ~B18!

B̃253~20.163!, ~B19!

B̃350.010. ~B20!

APPENDIX C: COUNTERION MELTING IS 3D XY

As the melting transition is approached from the ‘‘cou
terion liquid’’ side, we assume that there is an instabil
leading to a modulated counterion charge density on e
rod; then we allow for phase fluctuations. For the counter
density on each rod, we write

r~z!5A cos„Qz1f~z!…. ~C1!

Phase fluctuations disorder the charge-density wave ab
and render the mean charge density on a rod statistic
uniform in the ‘‘liquid’’ phase. The interaction betwee
counterions on a single rod will be of the form

1

2E E r~z!r~x8!V~z2z8!dz dz8. ~C2!

Making use of Eq.~C1!, one obtains terms of the form

E dzE dz8 V~z2z8!exp$ iQ~z2z8!1 i @f~z!2f~z8!#%.

~C3!

We now go to ‘‘center of mass’’ and ‘‘relative’’ coordinates
Let

Z5
z1z8

2
, ~C4!

Z5
z2z8

2
. ~C5!

e
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The double integral in Eq.~C3! is, then, proportional to

E dZE dZ V~Z!exp@ iQZ12if8~Z!Z1•••#

5E dZE dZ V~Z!exp@ iQZ#

3S 112if8~Z!Z1
1

2
@2if8~Z!Z#21••• D

5E dZ$v~Q!22if8~Z!v8~Q!12@f8~Z!#2v9~Q!%.

~C6!

Now, let us assume that

v~q!}E dzexp@ iqz#V~z!dz ~C7!

has a minimum atq5Q. Then,v8(Q)50 andv9(Q).0.
There is thus a contribution to the total energy going
*@df(z)/dz#2 dz.

Now consider the interaction between rods. One expe
that there will be terms of the form

E dz1E dz2 W~z12z2!exp$ iQ~z12z2!

1 i @f1~z1!2f2~z2!#%. ~C8!
.M

c.

-
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The f ’s are subscripted to make it clear that they refer
different rods. If one assumes that the interactionW is suffi-
ciently short ranged, which seems to be the case even
unscreened Coulomb interactions because of the sinuso
nature of the assumed state, one reveals the essence b
placing f2(z2) by f2(z1), and the integration in Eq.~C8!
becomes

E dz1 exp$ i @f1~z1!2f2~z1!#%

3E dz2 W~z12z2!exp@ iQ~z12z2!#

5w~Q!E dz1 exp$ i @f1~z1!2f2~z1!#%

→E w~Q!cos@f1~z1!2f2~z1!#dz1 . ~C9!

The result of this heuristic derivation is that there a
terms in the energy going as@df(z)/dz#2 and that there are
also terms going as cos„f1(z)2f2(z)…, where the subscripts
refer to near-neighbor rods. The universality class for
transition in this model is that of a 3DXY model. That the
model is spatially anisotropic does not influence the univ
sality class.
o-

.
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